

Copyright Systonomy Limited©, 2005 Page 1 of 4

Six Sigma and DFSS for IT and Software Engineering

Position Paper
Radouane Oudrhiri, CTO, Systonomy Limited

Six Sigma has been extremely successful when applied to manufacturing and transactional
processes and large efficiency gains and savings have been made in those industries.
However, Six Sigma remains almost unknown in the fields of Information Technologies (IT)
and software engineering despite the obvious need for radical improvements in these
industries.

Why is this? Do we assume IT and software engineering to be so different from other
industrial processes that Six Sigma methods don’t work?

Misconceptions & Considerations

The main issue would seem to be the notion that software engineering is “intangible” and
“innovative” of nature and is therefore not suitable for the application of rigid disciplines such
as Six Sigma. Unfortunately this notion has been reinforced by several companies who have
attempted to apply manufacturing or transactional versions of Six Sigma without adaptation.
While Six Sigma concepts and methods are generally useable across a broad range of
industries it has always been known that adaptation for specific industries would be required.

Therefore we must accept that software development is not primarily a manufacturing activity.
It is an engineering project management activity and therefore there are technical aspects
that need to be understood in Six Sigma terms:

· Software Engineering is a social discipline ; it is a mixture of technical,
organisational and social knowledge. Unlike other engineering disciplines, there is no
separation between the knowledge of how to develop products and the knowledge of
how to organise development processes. Often software processes are macro (or
even meta) processes that rely on individual skills and competences; process
variation can never be eliminated.

· Software engineering is a particular engineering discipline where the work is mostly
on models and rarely on real world objects. All deliverables from requirements, to
architecture, to design are just models, including the final product itself (i.e. Software
or an Information System); it is a representation of a real world situation. The quality
of the final product lies in the modelling power and techniques used to express the
problem.

· Information and Software Systems are layered systems. They are built upon
systems, which are themselves built upon other systems. They are designated as
complex systems having emergent properties (e.g. safety, security and some
aspects of reliability).

· Last but not least, Information System and Software Engineering is a first and
foremost an Engineering of Evolution and not only and Engineering of
Construction. In that sense, it would be closer to life science and bioengineering than
civil engineering and manufacturing. Though most of the analogies and terminologies
come from civil engineering.

In addition to these inherent properties, there are many process improvement methods that
are often perceived as competitors with Six Sigma such as CMM®, CMMI®, ISO Tickit, ITIL
and more recently Agile methods. This often leads to misconceptions whereby organisations

Copyright Systonomy Limited©, 2005 Page 2 of 4

believe that Six Sigma is only applicable at high levels of maturity (e.g. CMM level 3 or 4) and
not realising that Six Sigma is actually a continuous improvement method applicable at any
maturity level.

George Box - one of the leading statisticians - sums it up right, when he said: “all models are
wrong, but some models are useful”. All models, including Six Sigma, have their limitations
and are a simplification of the real world. But, when models are combined they often give a
rise to a more powerful model. Maturity based models such as CMM® or CMMI® provide a
framework for process improvement, helping organisations identify which process areas need
attention to reach certain maturity. However, many organisations find it difficult to establish
the relationship between business results and measurable improvements. Six Sigma brings
the know-how for establishing this relationship. By focusing on bottom-line results, Six Sigma
helps in justifying the ROI of process improvement, which is a crucial element for starting any
improvement initiative, but often difficult to establish.

What is Six Sigma for IT and Software Engineering?

Six Sigma is much more than statistics and measures of defects. Six Sigma is a company-
wide strategic initiative to accelerate and sustain continuous improvement of IT and software
process performance and product quality, while increasing customer satisfaction. Six Sigma is
applicable to two dimensions of the IT world and Software business:

First: The Development or Implementation Process – apply Statistical Process Control
(SPC) techniques to process elements and artefacts.

Figure 1: SPC and statistical thinking for software development process

The objective is to build quantitative models to understand current performance and product
qualities and thus increase the process capability and the organisation maturity (Listen the
Voice of the Process). By collecting and analysing in-process measures throughout the
software lifecycle, such as process capability, defects by phase, origin of defects, productivity,
maturity etc, Six Sigma (and more precisely the DMAIC methodology – Define Measure
Analyse Improve Control) provides a systematic approach for:

· eliminating defects, rework and improving the process.
· measuring and minimising the probability of defects.
· deducing Y = f(x) and characterising the software engineering process in terms of:

o Ycost = f (xpeople, xtools , xprocess, xtechnology . . .) + �
o Yquality = f (xpeople, xtools , xprocess, xtechnology . . .) + �
o Ytime = f (xpeople, xtools , xprocess, xtechnology . . .) + � , and
o a hierarchy of Y’s to X’s: Xprocess = Yprocess = Xrequirements +Xdesign +Xcoding +

Xtesting + ...

Copyright Systonomy Limited©, 2005 Page 3 of 4

Above all, Six Sigma encourages the “statistical thinking”: It considers that variation exists in
all processes and the knowledge and management of variation are key success to process
improvement. Six Sigma therefore eliminates the ambiguity around the calculation of process
capability, by using the sigma capability, which considers both process variability and process
centring objectives.

Second: The Software Product – apply Six Sigma, and more precisely DFSS (Design for
Sigma Sigma) to designing software products and solutions. This will start by identifying the
quality attributes that are critical to the Customer called CTQs (Critical to Quality, i.e. Listen to
the Voice of Customer) and then derive the appropriate design.

Classical software engineering design consists of constructing functional and structural
models in accordance to customer needs. DFSS adds the concept of a statistics-based
transfer function that captures design parameters contained in these models (functional and
structural) to produce an equation that describes the output, Y, in terms of the x’s in the
design, and design accordingly the components that affect Y. This transfer function will
particularly help in:

· inferring statistical models Y=f(x) to predict, during development phases, the
desired quality attributes.

· predicting the probability of defects at design time, or the probability that Y is outside
its limits.

· optimising designs to produce the best possible distribution for Y.
· maximising utility functions.

Figure 2: Form structural design to transfer function

DFSS was created in part because Six Sigma organisations found that they could not
optimise products past 3 or 4 sigma without redesigning the product. Improving the sigma
level from 4 sigma to 5 sigma requires 27-fold improvement performance and 69-fold from 5
to 6 sigma. That means that “six sigma” levels of performance have to be “built-in” or “by
design”. DFSS revolutionised product development by giving design engineers a statistical
perspective on the quality of their designs. It helps in the identification of the risks of non-
satisfaction of these CTQs including analysis, mitigation, proposal of robust design
solutions, simulation and then verification and validation of these solutions by putting them
under stress in extreme conditions.

While DFSS seems very appealing to Software Engineers it requires a paradigm shift. Most
software engineering design methods rely on deductive approaches and structural

Copyright Systonomy Limited©, 2005 Page 4 of 4

deterministic models. DFSS uses inductive approaches and in some cases non-deterministic
models. These techniques are well known within the academic world, but not yet of a
common use within industry. Distributed, heterogeneous and more generally complex
systems will make this more apparent.

Establishing the relationship between in-process measures and end-product measures is an
essential element for developing predictive quality models. Measurements drive behaviours
(“right” and “wrong”) as Tom Demarco pointed out: effort moves toward what is measured. Six
Sigma can be used consciously and willingly to drive the “right” behaviours toward desired
business goals. It acts as a cultural change enabler for achieving high levels of maturity and
capability. Figure 3 shows an example of defects distribution throughout the lifecycle, at
various levels of maturity. In low maturity level organisations, most defects are found at formal
machine testing. Formal machine testing is often the only verification & validation activity. In
higher maturity level organisations, a combination of verification techniques an applied to
various artefacts such as requirement specifications, design and not only the executable
code, therefore defects are found earlier in the life cycles. Six Sigma helps in:

· The early defect detection, defect prevention and phase containment expressed by
the right arrow of the diagram.

· The reduction of defect injection, as expressed by the top arrow of the diagram. This
is generally achieved through successive iterations and feedbacks. It is the
continuous process improvement and learning organisation.

Figure 3: Defect density per phase at various maturity levels

About the author
Radouane Oudrhiri is Director of Systonomy consultancy company specialised in Software
Quality Engineering and Six Sigma for IT and Software. He has more than 18 years of
teaching and consulting experience in software quality engineering, process improvement and
Six Sigma/DFSS for software. Radouane is a Software Six Sigma Master Black Belt trained
by GE Medical Systems. Radouane has an M.S. in Operations Research from ENSAE Paris,
MBA and a Ph.D. in Information Systems and Decision from ESSEC Paris. Radouane can be
contacted at radouane@systonomy.com

